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Abstract—Distributed and collaborative machine learning over
emerging Internet of Things (IoT) networks is complicated by
resource constraints, device, and data heterogeneity, and the need
for personalized models that cater to the individual needs of each
network device. This complexity becomes even more pronounced
when new devices are added to a system that must rapidly
adapt to personalized models. Along these lines, we propose
a networked federated meta-learning (NF-ML) algorithm that
utilizes meta-learning and underlying shared structures across
the network to enable fast and personalized model adaptation of
newly added network devices. The NF-ML algorithm learns two
sets of model parameters for each device in a distributed manner,
with devices communicating only with their immediate neighbors.
One set of parameters is personalized for the device-specific task,
whereas the other is a generic parameter set learned via peer-to-
peer communication. The performance of the proposed NF-ML
algorithm was validated using both synthetic and real-world data,
and the results show that it adapts to new tasks in just a few
epochs, using as little as 10% of the available data, significantly
outperforming traditional federated learning methods.

Index Terms—Distributed, generic parameters, graph
federated learning (GFL), meta-learning.

I. INTRODUCTION

THE EMERGENCE of the Internet of Things (IoT),
coupled with significant advancements in information

and communications technology, has paved the way for the
effortless collection of vast amounts of data. This surge of
data has captured the interest of businesses and researchers,
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leading to the broader adoption of data-driven strategies for
more insightful decision making. Traditionally, these strate-
gies, including deep learning, have relied on access to large,
centrally located, data sets for effective and efficient data-
driven model development [1]. However, such centralized
approaches are associated with high communication and stor-
age demands owing to data transfer and aggregation from
myriads of devices, particularly those generating high vol-
umes of data, such as video cameras or lidar sensors [2].
Furthermore, transmitting a massive amount of data to a single
central processing point can raise privacy and legal concerns,
especially in light of stringent regulations such as the General
Data Protection Regulation (GDPR) [3].

Distributed learning has emerged as an attractive alternative
that offers a framework that leverages on-device processing
capabilities, and facilitates efficient data analysis without the
need for data transfer from devices. One prominent method-
ology within distributed learning is federated learning (FL),
introduced in [4] as a concept that emphasizes the collabora-
tive training of machine-learning models without centralizing
client-specific data. This process involves training the model
locally on each client and transmitting only model updates to
a central server. The central server aggregates these updates to
improve the model, which is then sent back to the devices for
further learning, a procedure that continues until convergence.
This approach effectively reduces the risk of data exposure and
is well suited for IoT scenarios [5], [6], [7], [8]. In addition
to data privacy, FL enhances the scalability of IoT networks
by distributing the learning process without overwhelming the
central server. Also, the absence of massive data transfers from
IoT devices reduces communication costs [9], particularly
beneficial in networks with limited bandwidths.

Although FL is a promising approach for IoT devices,
it is not without its challenges. First, due to statistical
heterogeneity, a single model may not be optimal for all
clients [10]. Second, training a shared global model could
still require significant communication resources [11]. Third,
model aggregation cannot rely solely on a single server as
blockages may occur in large systems [12], [13]. Finally, the
risk posed by malicious clients, who can disrupt the learning
process, raises serious security concerns [14], [15]. In this
article, we focus on the first and third challenges.

Various solutions have been proposed to address the
challenge of using a single model for every client, with
personalized FL (PFL) emerging as a prevalent approach [16].
PFL largely follows the conventional FL process, starting with
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training a single global model. Once trained, this model is
locally fine-tuned at each FL client using local data. This
two-step approach, which combines global training with local
adaptation, is considered a promising strategy for model
personalization in FL [14].

Building on the foundation of PFL, various techniques
for enhancing knowledge sharing among clients have been
explored. The pFedMe algorithm for PFL was introduced
in [17], leveraging Moreau envelopes as client-specific reg-
ularized loss functions. This approach uniquely decouples
personalization from global model learning. A method that
promotes collaboration between similar clients using federated
attentive message passing and enables more effective collabo-
ration among clients was introduced in [18]. PFL was refined
in [19] by deriving the generalization bounds of mixed local
and global models, pinpointing the optimal mixing parameter
for improved personalization. Other works have capitalized on
client relationships, formulating an underlying graph structure
to facilitate more effective personalization models [20], [21].
Specifically, the methodology in [20] employs prompt-based
communication, thus enabling the server to determine client
relationships and analyze spatiotemporal correlations while
maintaining data privacy.

Despite advances in the field of PFL, it is essential to
note that most existing approaches rely heavily on centralized
servers for coordination and model aggregation. Some works
tackling this particular issue of centralized servers are briefly
discussed as follows.

For instance, a client–edge–server hierarchical learning
method was proposed in [22], in which it is assumed that
there is one cloud server and multiple edge servers, with
each edge server connected to a set of clients. The edge
servers aggregate models from the clients associated with them
and then communicate their aggregation results to a central
cloud server for global aggregation. However, this single cloud
server approach is susceptible to bottlenecks and has a limited
capacity to accommodate edge servers [23].

Graph FL (GFL) was proposed in [24] as a refined FL
framework involving multiple interconnected servers, each
associated with specific clients, and allowing the repre-
sentation of server connections through a graph to avoid
communication failures and computational overloads at the
server. GFL was enhanced by using multiple servers [25]
via an online graph federated multitask learning (O-GFML)
algorithm within the context of kernel regression to effi-
ciently handle online data streaming across clients. Although
these techniques present a distributed solution, they often
depend on servers for aggregation, limiting their full poten-
tial. Furthermore, these methods do not fully leverage the
inherent relationships between devices, leaving interconnected
information unexplored and underutilized. Additionally, they
demonstrate a limited capacity to adapt to growing networks
in which new devices/clients continuously join, hindering their
scalability and flexibility.

Distributed learning was exploited for efficient use of local
information and network computational resources, particularly
in optimizing convex objective functions across multiagent
systems [26], [27]. Adaptive cost frameworks were introduced

to study the tradeoff between computational and communi-
cation costs in distributed learning environments [28], [29].
However, while these studies lay a solid foundation for
distributed optimization and address challenges related to
communication/computational efficiency, they focus on a fixed
number of nodes and do not account for dynamic scenarios
where the network topology might expand with new nodes
joining. Such a dynamic scenario is particularly relevant
in modern applications, where nodes (e.g., mobile devices
or distributed sensors with limited data and computational
resources) frequently enter the network.

This article introduces a novel networked federated meta-
learning (NF-ML) framework. Unlike traditional approaches,
NF-ML functions without a central server for model aggre-
gation and seamlessly incorporates new devices into the
network. By utilizing meta-learning and relying solely on
connections with immediate neighbors, NF-ML develops a
generic model that is quickly adaptable to newly joined devices
in the network. This approach simplifies and accelerates the
development of personalized models for each new device,
requiring fewer training samples and learning epochs. To
validate the efficiency of the proposed method, we tested
it by using synthetic and real-world data. Additionally, we
benchmarked NF-ML against various FL strategies, including
training a test device from scratch, and traditional techniques,
such as FedAvg and personalized FedAvg. These comparisons
further highlight the effectiveness of NF-ML in dynamic
environments. The main contributions of this manuscript are
summarized as follows.

1) We introduce NF-ML, a PFL framework that leverages
meta-learning and device interconnectivity to efficiently
manage expanding IoT networks.

2) A key feature of NF-ML is its fully distributed training
approach wherein each network device learns generic
and personalized model parameters, eliminating the need
for a central server and enhancing the network scalability
and robustness.

3) NF-ML features fast adaptation of newly integrated
devices by significantly reducing the number of
epochs and data samples required for training their
device-specific tasks, thus improving overall network
performance.

The remainder of this article is organized as follows.
Section II provides the fundamentals and explains the key
concepts and variants of meta-learning and FL. Section III
introduces and details NF-ML and highlights its unique meta-
learning-based training and rapid adaptation to new devices.
Section IV discusses the synthetic and real-world data used in
our experiment and compares the performance of NF-ML with
that of other standard methods. Finally, Section V concludes
this article and outlines potential future work.

Notations: Uppercase (resp., lowercase) bold letters denote
matrices (resp., column vectors). Scalars are represented using
regular lowercase letters, such as a. The transpose of matrix
A is denoted AT. The gradient of a function is denoted by
∇a(·). Sets are denoted by calligraphic letters (except the loss
function, which is represented by L) and |C| is the cardinality
of set C. The Euclidean norm of a vector is denoted as || · ||2.
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Finally, U [a, b) denotes a uniform distribution over interval
[a, b).

II. PRELIMINARIES

In this section, we first review the concepts of FL. Next,
we discuss meta-learning [30] and, finally, the fundamentals
of Reptile [31], a meta-learning variant.

A. Federated Learning

In the traditional FL environment, a server is connected to
a set of clients S to solve the following optimization problem:

min
θ

L(θ), where L(θ) = 1

|S|
∑

k∈S
Lk(θ ,Dk) (1)

where θ represents the globally shared model parameters and
Lk is the local objective function used in conjunction with the
local data set Dk for the kth client [4], [16].

In each iteration of the FL algorithm, designated by n,
the server initially broadcasts the global model, denoted by
θn, to a predefined subset of clients specified by Sn. Upon
receiving the global model, each client performs local learning
by executing one or more gradient updates. For instance, when
employing a single gradient update, the local update can be
expressed as

θk,n+1 = θn − η∇Lk(θn,Dk) (2)

where η > 0 is the stepsize that controls learning rate and
stability. After performing local updates, the selected clients
share them with the server that updates the global model as
follows:

θn+1 = 1

|Sn|
∑

k∈Sn

θk,n+1. (3)

This update-aggregation procedure is repeated until conver-
gence, or when a predefined performance criterion is satisfied.

B. Meta-Learning

Meta-learning aims to train a meta-function fθ , a generic
structure across various tasks that can quickly adapt to new
tasks, even with few training examples. Different algorithms
have been investigated to train the meta-function fθ [32].
Among these, the model-agnostic meta-learning (MAML)
algorithm [33] is prominent due to its universal applicability
and model-agnostic characteristics. Unlike previous meta-
learning methods [34], [35], [36] that learn an update function
or rule, MAML does not increase the number of learned
parameters or impose constraints on the model architecture,
such as requiring a recurrent model [37] or a Siamese
network [38]. Furthermore, it can be utilized with various
loss functions, including differentiable supervised losses and
nondifferentiable reinforcement learning losses, to ensure effi-
cient weight initialization. MAML involves two functions: the
first one (fθ ) is a meta-function with parameters θ and is
trained across the set of tasks T , and the second one (fφi

)

with parameters φi corresponding to a specific task Ti ∈ T .
The generic model θ serves as a starting point for learning a

specific task. In MAML, the data set of each task is partitioned
into a support set (DS) and a query set (DQ), which are used
to iteratively update φ and θ , respectively. At time index n,
given the generic structure θn, the task-specific model φi,n is
updated via a gradient descent search over the task-specific
loss function LTi for Ti ∈ T as follows:

φi,n = θn − η∇θnLTi

(
θn,DS

i

)
(4)

where η is the learning rate. Using the updated φi,n, MAML
then calculates the loss on the query set DQ

i as

LTi

(
φi,n,D

Q
i

)
= LTi

(
θn − α∇θnLTi

(
θn,DS

i

)
,DQ

i

)
. (5)

The term θn−α∇θnLTi(θn,DS
i ) in (5) represents the updated

parameter φi. Once the loss on the query set for each task is
computed using (5), the following meta-update step is executed
to refine θn:

θn+1 = θn − β∇θn

∑

Task i

LTi

(
φi,n,D

Q
i

)
(6)

where β is the learning rate for the meta-update. Although
MAML is model-agnostic and has universal model architecture
adaptability, it may become computationally prohibitive in
certain situations. The complexity primarily arises from the
need to compute Hessian-vector products for the meta-gradient
calculation in (5), with Hessian being the matrix of second-
order partial derivatives. Although this product does not need
to be computed directly, as efficient algorithms exist for this
purpose, the computational complexity of MAML can still be
prohibitive for large-scale problems or resource-constrained
devices due to the linear increase in complexity with the
number of inner stage gradient updates.

To sidestep the need for the Hessian, a few variants
of MAML have been developed, such as FOMAML and
Reptile [31]. The simplicity of the implementation and absence
of a need for partitioning the data into query and support sets
makes Reptile a more natural choice than FOMAML. It learns
task-specific parameters φ using generic parameters θ and
training data. Subsequently, θ is updated using the parameters
trained over the |T | tasks, as follows:

θn+1 = θn + ε

|T |
|T |∑

i=1

(
φi,n − θn

)
(7)

where ε is a hyperparameter that controls the rate of the
update. From (7), we see that Reptile updates parameters θ

in the direction of
∑

i(φi− θn) without the need for Hessian-
vector products.

III. PROBLEM FORMULATION AND PROPOSED

ALGORITHM

We consider a distributed federated network of IoT
devices [39] represented by an undirected graph at time t,
Gt = (Kt, Et), where Kt is the set of IoT devices with K =
|Kt| and Et ⊆ Kt × Kt is the edge set such that Et(k, �) = 1
(resp., Et(k, �) = 0) indicates that devices k and l are (resp.,
are not) neighbors. A device k ∈ Kt can only communicate
and share model parameters with its neighbors. The set Nk =
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Algorithm 1 NF-ML Training
At all devices k ∈ K, initialize θk randomly for n = 0, and
Bk ← split(Dk into batches of size B)

for n = 1 to NGlobal do
Local Parameter Update:
Nk from Et for device k
θk,n = 1

|Nk|
∑

�∈Nk
θ�,n

φ̃
(0)

k,n = θk,n

for j = 1 to |Bk| do
φ̃

(j)
k,n ← φ̃

(j−1)

k,n − η∇Lk

(
φ̃

(j−1)

k,n , bj

)

end for
φk,n = φ̃

(j)
k,n

Meta Update:
θk,n+1 = (1− ε)θk,n + ε · φk,n
Share(θk,n+1)→ Devices{� : � ∈ Nk \ {k}}

end for

{� ∈ Kt : {k, �} ∈ Et} ∪ {k} is defined as the neighborhood set
of device k, which includes not only the neighbors of device
k but also the device k itself.

The graph Gt is assumed to be growing, i.e., it expands
at t + 1 as new devices join the network. The objective for
these new devices is to quickly adapt to their tasks by using
limited data samples without relying on the central server.
In order to achieve this objective, we develop an efficient
and distributed method that leverages the concept of meta-
learning within a networked FL framework. The proposed
approach sets up two kinds of parameters for each device:
1) localized model parameters (φk) for their own tasks and
2) generic parameters (θk) that hold information about the
general structure of data available at devices participating
in networked FL environment. When shared, these generic
parameters (θk) help newly joined devices in the graph to
quickly adapt to their tasks. It is worth mentioning that we will
use “localized model parameters” and “personalized model
parameters” interchangeably. These parameters represent the
fine-tuned version of the generic parameters (θk) for device k,
obtained through one or more gradient update steps.

The NF-ML algorithm comprises two main steps. The first
step, referred to as the distributed FL step, involves several
communication rounds between each device and its neighbors.
At the start of each round, the local model parameters
(φk) are initialized with generic parameters (θk) and then
updated based on local data. A meta-update is then performed,
which is shared and merged with neighboring devices for
subsequent rounds. After several communication rounds, the
optimized generic parameters are obtained. The second step
involves incorporating new devices and adjusting their initial
parameters to create a personalized model. For this purpose,
the algorithm utilizes neighboring devices and their fine-tuned
generic parameters for fast and efficient device integration.

A. NF-ML Distributed FL

The primary objective of the NF-ML algorithm is to learn
generic model parameters θ for each device to minimize the
average loss across its neighboring devices based on its generic

parameters. The objective function for the kth device can be
represented as follows:

min
θk

1

|Nk|
∑

�∈Nk

L�(U(θk),D�) (8)

where U(θk) represents the operator that updates θk using data
D� by applying one or more gradient updates yielding φ�. For
instance, in the case of using one full batch gradient update

φ� = U(θk) = θk − η∇L�(θk,D� ) (9)

where η is the local learning rate and L� represents the local
objective function of the �th device and is computed as

L�

(
φ�;D�

) = 1

m
||y� − ŷ�||22 =

1

m
||y� − fφ�

(X�)||22 (10)

with fφ�
being the personalized model, parameterized by φ�.

During each communication round, both the personalized
and generic model parameters are iteratively updated to
effectively capture both the personalized dynamics specific to
each device and the generic structure among them. In the nth
communication round, NF-ML initializes the local parameters
(φk,n) for the kth device with the generic parameters (θk,n)

from it neighbors and then refines them using gradient updates
from local data at each device as

φk,n ← φk,n − η∇Lk
(
φk,n; b

)
, b ∈ Bk (11)

where b denotes a single batch, and B represents the set of
batches obtained by splitting the data Dk into batches of size
B. This approach can be readily adapted to batch gradient
descent, where the batch size can be equal to the total available
data size. Following the local update process, a meta-update
step is performed based on the Reptile algorithm using local
model parameters

θk,n+1 = (1− ε)θk,n + ε · φk,n. (12)

The updated generic parameters are then shared with neighbors
for parameter aggregation, to be utilized as the initialization
of local parameters for the next communication round

θk,n+1 = 1

|Nk|
∑

�∈Nk

θ�,n+1. (13)

In (13), the aggregation process involves the generic param-
eters of the neighboring nodes and the device itself.
Alternatively, the aggregation could solely be based on the
parameters of the neighboring nodes, excluding the device’s
parameters. The process in (11)–(13) is repeated until the
convergence criterion is satisfied.

B. NF-ML Rapid Adaptation

As discussed above, when new IoT devices join the network
at (t + 1), graph Gt expands and transforms into Gt+1 =
(Kt+1, Et+1) with new device indices added in Kt ⊆ Kt+1. The
edge set Et+1, of size |Kt+1| × |Kt+1|, is adjusted accordingly
to accommodate the indices of the new devices.

We assume that new devices naturally recognize their neigh-
boring devices based on distance or another device discovery
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Algorithm 2 NF-ML Rapid Adaptation

At all test devices k′ ∈ Kt+1, Bk′ ←
split(Dk′ into batches of size B)

Get Nk′ based on the Et+1
θk′ = 1

|Nk′ |
∑

�∈Nk′ \k′ θ�

φ̃
(0)

k′ = θk′
for s = 1 to NLocal do

for j = 1 to |Bk′ | do
φ̃

(j)
k′,s ← φ̃

(j−1)

k′,s − η∇Lk

(
φ̃

(j−1)

k′,s , bj

)

end for
end for
Model Evaluation: Performance is assessed by (10)

strategy [40], [41].1 Upon entry, the new device initializes its
localized model parameters by aggregating the corresponding
values from its neighboring devices, which allows rapid
adaptation to a personalized model with few samples. This
aggregation is similar to that in (13) as mentioned below for
the new device k′ ∈ Kt+1 joining the network

θk′ = 1

|Nk′ |
∑

�∈Nk′ \k′
θ�. (14)

Next, the algorithm enters a fine-tuning phase to obtain a
device-specific optimal local model. An overview of this
adaptation process in the context of NF-ML is presented in
Algorithm 2.

IV. EXPERIMENTS

In this section, we demonstrate the effectiveness of the
proposed NF-ML algorithm through a series of experiments
using both synthetic and real-world data sets.

A. Experiment With Synthetic Data

To evaluate the proposed methodology using synthetic data,
we utilized a graph based on the caveman graph structure [42].
This graph consists of K = 24 devices divided into three
clusters (Q ∈ {1, 2, 3}) each made of eight devices, as
shown in Fig. 1. Connections within each cluster are dense,
whereas sparse connections bridge different clusters, reflecting
weaker associations between the devices of separate clusters.2

Additionally, the graph expands as new devices join. In Fig. 1,
the blue devices represent the initial devices of the graph at
a specific time, whereas the red devices indicate those that
joined the network at a later stage.

The kth devices in the graph is associated with m = 1000
samples characterized by d = 64 features, resulting in an input
matrix Xk ∈ R

d×m, drawn from a uniform distribution U [0, 1),
while the corresponding output is given by

yk = XT
k wk (15)

1The design of an efficient and trustworthy method to connect these devices
falls outside the scope of this article.

2This structure mimics the relationships observed in different friend groups
within social networks.

Fig. 1. Synthetic network (red nodes represent the newly joined devices).

where wk ∈ R
d is the weight vector. More specifically, the

weight vector combines two sets of weights: one specific to
each device [denoted w′

k and sampled from U [0, 1)], and one
common to all devices in the same cluster [denoted wQ and
sampled from U [0, 1)]. The two sets of weights are combined
according to

wk = wQ + 0.1w′
k. (16)

After the output is computed for each device as per (15), it
undergoes the following nonlinear transformation:

yk = y1.5
k + 3yk. (17)

The primary objective of this experiment is to estimate
the device-specific weights to achieve the NF-ML objective
in (8) and exploit the input–output pairs available at each
device. To facilitate parameter sharing and aggregation among
neighboring nodes, each device estimates its specific weights
using a simple neural network.3 In the context of NF-ML
training, our experimental setup utilizes 20 devices for the
training process while keeping four devices and their edges for
testing purposes. The local update and meta-update learning
rates are set to η = 0.001 and ε = 0.9, respectively.
The training process is conducted over 30 communication
rounds, employing the mean-squared error (MSE) criterion as
a performance indicator. A mini-batch strategy is incorporated
for parameter updates, executed with a batch size of 4.
Upon completion of the NF-ML training, test devices are
subsequently integrated into the graph and fine-tuned over 50
epochs with a learning rate set to 0.001 and utilizing a small
number of training data samples.4

A series of experiments was designed to evaluate the
proposed algorithm. To underscore the effectiveness of meta-
learning, we initially assessed the performance of test devices
integrated into the network without prior knowledge. This
scenario is henceforth referred to as “learning from scratch,”

3This neural network has two linear layers. The first takes a 64-size input
and outputs 128 neurons. The second layer reduces it to a single output. A
ReLU activation is used between the layers.

4It is important to note that each scenario hyperparameters are chosen based
on the grid search. While no specific optimization strategy has been employed
for this process, adopting one could enhance the NF-ML model’s performance.
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Fig. 2. Training loss on test devices utilizing synthetic data. (a) Test Device
1. (b) Test Device 2. (c) Test Device 3. (d) Test Device 4.

implying that the local model parameters are either randomly
initialized or set to zero. Subsequently, comparisons were
conducted with established methods that leverage a central
server, namely, FedAvg and Personalized FedAvg. In the
conventional FedAvg setup, devices learn and transmit their
models to a server that aggregates them and disseminates the
updated model back to the devices for further refinement, as
per (2) and (3). Upon the integration of test devices into the
network, they utilize the pre-existing global server model for
task execution. In contrast, the Personalized FedAvg approach
necessitates an additional step of locally fine-tuning the server
model for each test device through an extra 50 epochs.

Fig. 2 illustrates the training loss as a function of the
number of epochs for both the proposed NF-ML algorithm
and the scenario in which learning was initiated from scratch.
In both cases, the model was trained using only 10% of the
data from each test device. It is evident that NF-ML, by
utilizing parameters from neighboring devices and employing
meta-learning, achieves faster convergence. This led to a
reduction in the number of required epochs and a substantial
decrease in the learning time and energy consumption of newly
integrated devices. This significant performance advantage was
consistently maintained across all the test devices for up to 50
epochs and extended beyond this range.

Building upon the previous discussion, Fig. 3 presents
a direct comparison between the two device integra-
tion approaches, focusing specifically on their predictive
performance. The results clearly show that the model trained
from scratch struggles to accurately predict the test data, par-
ticularly during peaks or sudden fluctuations. In contrast, the
NF-ML model demonstrates superior prediction performance,
highlighting the agility of NF-ML in adapting to new tasks
even under the constraints of limited data availability.

In the subsequent analysis, the focus was on investigating
the influence of the training data set size on the MSE of the
predictions. To this end, the models were trained on the test

Fig. 3. Prediction for Test Device 3 using synthetic data.

Fig. 4. Prediction loss with varying percentage of training data on test devices
using synthetic data. (a) 10% training data. (b) 20% training data. (c) 30%
training data. (d) 40% training data.

devices using training data sets of varying sizes. Fig. 4 shows
the prediction losses for each test device as the size of the
training data increased from 10% to 40%. As expected, larger
training data sets are associated with a decrease in prediction
losses. This effect is particularly noticeable in the NF-ML
models, where the prediction loss significantly decreases from
approximately 100 to 10−1 when the training size increases
from 10% to 40%. Conversely, models trained from scratch
exhibit only a marginal improvement, with prediction losses
generally remaining at approximately 101.

Fig. 5 compares the proposed NF-ML algorithm with the
approach when new devices are trained from scratch, FedAvg,
and Personalized FedAvg. In this comparison, NF-ML out-
performs the others across all newly integrated test devices
in the graph, as evidenced by its lower prediction loss on
the test data. This test set comprises 100 samples, and for
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Fig. 5. Comparative analysis of prediction loss on test devices using synthetic
data.

Fig. 6. Impact of the meta-update step size (ε) in the scenario with synthetic
data.

fine-tuning, each model, including NF-ML and Personalized
FedAvg, utilized 400 samples, the same number used for
training from scratch. Although Personalized FedAvg shows
improvements over alternative state-of-the-art models, it still
does not achieve the efficiency of the proposed NF-ML. In
addition to its superior performance, a key feature of NF-ML
is its decentralized functionality, which obviates the need for
a centralized server.

Fig. 6 shows the impact of the meta-update step size (ε) on
test performance using synthetic data by fine-tuning the test
devices over 30 epochs after the NF-ML training is complete.
The average loss for the test devices decreases with ε, reaching
optimal performance when ε ∈ (0.8, 0.9).

B. Experiments With Real-World Data (Temperature)

To assess the effectiveness of our proposed algorithm
using real-world data, we utilized hourly temperature readings
from 55 land stations in the Large Molène area for January

Fig. 7. Temperature-sensor network (red nodes represent the newly joined
devices).

TABLE I
MODEL FOR THE EXPERIMENT WITH REAL-WORLD DATA

2014, sourced from the National Meteorological and Climatic
Service database [43]. We constructed an undirected graph
linking each sensor to its four nearest neighbors and a visual
representation of this graph is shown in Fig. 7. To simulate a
growing graph, the sensors were divided into two sets. Initially,
the graph Gt at time t consists of sensors marked in blue, and
then, at time t + 1, new sensors marked in red are integrated to
form Gt+1. Of these, 37 sensors that provided complete records
for the period are included in our study.5 In this configuration,
each sensor functions as a device within the FL framework.

In this experiment, each device was tasked with predicting
the temperature at the next timestamp using data from the
previous ten timestamps. To facilitate this task, each device
is equipped with its own neural network model, as neural
networks can effectively extract the relations in an ordered
set of continuous points [44]. The detailed specifications of
which are listed in Table I. The architecture of the network
includes an input layer, a hidden layer, and an output layer,
with nonlinearity introduced via the ReLU activation function.
For data preprocessing, we employ min–max normalization on
the data at each test device using the scikit-learn library.6 The
normalization transformation, fitted to the training data, was
subsequently applied to the test data to ensure consistency in
the data processing.

We trained our algorithm on real-world measurements using
31 devices, while six devices and their associated edges were
reserved for testing. We set the local learning and meta-
learning rates to η = 0.001 and ε = 0.9, respectively, and used
MSE as the loss metric. We employed the Adam optimizer
and conducted 400 communication rounds to determine the
parameters θk and φk for each participating device.

5Data Source: Molene-Dataset available at https://github.com/bgirault-
usc/Molene-Dataset.

6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing
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(a) (b)

(d)(c)

(e) (f)

Fig. 8. Training loss on test devices utilizing real-world (temperature) data.
(a) Test Device 1. (b) Test Device 2. (c) Test Device 3. (d) Test Device 4.
(e) Test Device 5. (f) Test Device 6.

We employ approximately 10% of the total sensor data for
NF-ML rapid adaptation, equating to roughly three days of
hourly temperature readings, using a mini-batch size of 64 and
a learning rate of 0.001.

In Fig. 8, we compare our NF-ML-based methodology with
model training from scratch on newly integrated devices. The
NF-ML model demonstrates a significantly faster convergence
rate, highlighting the enhanced performance of our algorithm
on the test devices. Throughout the 30-epoch training period,
the approach with new models trained from scratch consis-
tently showed higher training losses than those trained using
the NF-ML methodology. The proposed methodology requires
fewer epochs to converge, particularly relevant with limited
training data samples, such as 10%. This implies savings
in terms of computational resources, convergence time, and
amount of training data.

Fig. 9 compares our proposed model and models trained
from scratch, emphasizing the prediction error in the test
devices. Our proposed methodology can accurately forecast
most testing samples, except for a few dips in the test data.
This limitation may arise from the model being fine-tuned on
only 10% of the training data, where the min–max scaling,
learned from this limited subset, might not fully represent the
entire data range. Despite this, our proposed NF-ML rapid

Fig. 9. Prediction for Test Device 2 using real-world (temperature) data.

(a) (b)

(d)(c)

Fig. 10. Prediction loss with varying percentage of training data on test
devices using real-world (temperature) data. (a) 10% training data. (b) 20%
training data. (c) 30% training data. (d) 40% training data.

adaptation achieves good results using only 10% of the total
training data compared to the case when new models are
trained from scratch, which significantly struggles to capture
the core data trends across all testing samples.

Fig. 10 demonstrates the improvement in the predictive
accuracy with the size of the training data (increasing from
10% to 40%). The NF-ML algorithm consistently outperforms
models trained from scratch across these varying training data
sizes. For instance, with Test Device 2 and Test Device 4,
we observe a rapid reduction in loss when the training data
expands from 10% to 20%. Similarly, Test Device 3 and Test
Device 5 show a marked decline in loss when the training data
are increased from 20% to 30% with NF-ML.

Fig. 11 compares our NF-ML method, FedAvg, and its
personalized variant in real-world scenarios, focusing on the
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Fig. 11. Comparative analysis of prediction loss on test devices using real-
world (temperature) data.

Fig. 12. Impact of the meta-update step size (ε) in the scenario with real-
world (temperature) data.

integration of new devices into the network. This analysis
used 13 days of data to fine-tune the NF-ML and PFL and
training models from scratch. Additionally, ten days of data
were used for testing. NF-ML stands out in this scenario,
consistently achieving the lowest prediction loss across all
test devices, demonstrating its superior performance. Although
the Personalized FedAvg approach demonstrated improved
performance on certain test devices, such as Test Device
3 and Test Device 6, NF-ML maintained its superiority
and consistently outperformed the other methods due to its
distributed nature.

Fig. 12 shows the impact of the meta-update step size (ε) on
test performance using temperature data by fine-tuning the test
devices over 50 epochs. The average loss for the test devices
decreases with ε, reaching optimal performance when ε ∈
(0.85, 0.95).

C. Experiments With Real-World Data (Images)

To assess the efficacy of our proposed algorithm in diverse
scenarios, we considered the publicly available MNIST digit

Fig. 13. Classification-device network (red nodes represent the newly joined
devices).

classification data set. The MNIST data set, comprising
images of handwritten digits, was divided among 12 nodes
representing the devices in our extended model. Each node
was designated specific label ranges to mimic real-world
distributed data scenarios: the first four nodes handled digits
labeled from 0 to 4, the subsequent four nodes managed labels
4–7, and the final set of four nodes processed labels 7–9. This
distribution ensures that each cluster of nodes specializes in a
segment of the overall data set. The underlying graph topology,
shown in Fig. 13, is based on the caveman graph structure,
akin to groups of people, where persons within a group are
mostly connected but have few connections to other groups.

In this experiment, we partitioned devices into training and
testing groups, with nine devices as training units shown in
blue and three as testing units depicted in red, which joined
the network later with limited resources. Each device operates
a small convolutional neural network (CNN) to perform the
classification task. The CNN architecture includes: a first
convolutional layer with 32 filters of size 3 × 3, using a stride
of 1 and padding of 1 followed by a max-pooling layer with
a size of 2 × 2 and a stride of 2; a second convolutional
layer with 64 filters of the same size, stride, and padding, also
followed by a max-pooling layer with the same pool size and
stride; a fully connected layer to flatten the pooled output and
link it to 128 neurons; and finally, an output layer of neurons
corresponding to the MNIST data set’s ten-digit classes. For
the NF-ML training, we set the learning rate η = 0.00005,
the meta-update rate ε = 0.9, and the batch size of 256,
utilizing the cross-entropy criterion and the Adam optimizer.
This setup was implemented over 50 communication rounds
to refine the generic θk and local φk for each participating
device in the training. Also in this case, we conducted a
series of simulations to evaluate the efficiency of our proposed
algorithm under varying conditions, specifically differing data
sizes and numbers of epochs.

In Fig. 14, we present a comparison between our NF-
ML-based approach and the method of training models from
scratch on newly integrated test devices. The NF-ML model
demonstrates significantly faster convergence, achieving sub-
stantial training accuracy after a single epoch, even with only
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(a) (b)

(c)

Fig. 14. Training loss on test devices utilizing real-world (images) data.
(a) Test Device 1. (b) Test Device 2. (c) Test Device 3.

(a) (b)

(d)(c)

Fig. 15. Test accuracy with varying percentage of training data on test devices
using real-world (images) data. (a) 10% training data. (b) 20% training data.
(c) 30% training data. (d) 40% training data.

10% data utilization. In stark contrast, the approach of training
from scratch struggles to reach similar performance levels even
after 20 epochs, highlighting the enhanced efficiency of our
algorithm on the test devices.

Fig. 15 illustrates the comparative performance of our
proposed NF-ML algorithm against the traditional approach
of training models from scratch across varying data set sizes
ranging from 10% to 40% of the available data to the device
with increments of 10%. This comparison is conducted over
a short span of only 5 epochs to emphasize the rapid learning
capabilities of newly integrated devices. The results show
that our algorithm consistently maintains high accuracy levels
(approximately 90% across all data set sizes), significantly
outperforming the traditional training approach. Notably, with
just 10% of the data, our proposed algorithm achieves an

Fig. 16. Comparative analysis of prediction loss on test devices using real-
world (images) data.

Fig. 17. Impact of the meta-update step size (ε) in the scenario with real-
world (images) data.

accuracy that the model trained from scratch fails to reach even
when provided with 40% of the total available data. For testing
purposes, we use 10% of the data available to the device.

Fig. 16 compares the performance of our proposed NF-ML
algorithm against established methods, such as FedAvg and its
personalized variant, specifically for the MNIST classification
task. Newly integrated devices were allowed to use 40% of the
available data, with the training restricted to just 5 epochs. This
setup was used to fine-tune the NF-ML and PFL algorithms
and train a model from scratch. We reserved 10% of the device
data for testing. The results show that our proposed NF-ML
algorithm significantly outperforms the other algorithms in
terms of testing accuracy across all test devices.

Fig. 17 shows the impact of the meta-update step size (ε)

on test performance using MNIST data by fine-tuning the test
devices over 3 epochs only. The average accuracy for the test
devices increases with ε, reaching optimal performance when
ε ∈ (0.8, 1).

V. CONCLUSION

This article introduces a fully distributed NF-ML algorithm
for expanding networks in a federated environment. With
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this approach, new devices can join the network and rapidly
adapt to the underlying task by leveraging parameters from
neighboring devices and fine-tuning them with minimal data
over a few epochs, thus ensuring efficiency and reduced com-
putational costs. The effectiveness of the proposed algorithm is
demonstrated using synthetic data from a connected caveman
graph, where each device performs regression; real-world data
from temperature sensors for predicting future values; and real-
world handwritten digit for classification tasks. Future works
will focus on adversarial settings (incorporating various attack
scenarios) and examining related robustness of the proposed
algorithm.
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